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Abstract—Dengue Hemorrhagic Fever (DHF) is currently
attacking residential areas unprepared to prevent the spread
of the Aedes Aegypti mosquito. This has resulted in many res-
idents suffering from DHF and eventually decreases economic
productivity in the particular area or country. Furthermore, if
the infected people’s ability to recover from this disease tends
to be slow, the economic strait will continue to weaken and the
death risk will rise. In addition to health quality and economy,
other factors such as knowledge and awareness of the danger
of DHF also influence how fast the recovery rate of the infected
people in a particular area, especially in Bojonegoro. Taking
into consideration these factors, a mathematical modeling
can be carried out to estimate the duration of survival rate
comprehensively. A survival model is a mathematical model to
estimate the duration of a certain population’s resistance to
an event. This study aims to find out what factors affect the
recovery rate of DHF, such as length of hospitalization, sex,
age, education, occupation, marital status, hematocrit levels,
thrombocyte count, and hemoglobin count. The model used
is the Survival Dagum 3 Parameter Link Function which
parameters were estimated using the Bayesian MCMC-Gibbs
Sampling method. The best survival model found was Dagum 3
parameter with normal distribution random effects. The factors
that influence DHF were Sex (X1), Age (X2), Education (X3),
Occupation (X4), Hematocrit Level (X5), Thrombocyte Count
(X6), and Marital Status (X8).

Index Terms—Bayesian; Dagum 3 Parameter; Dengue Hem-
orrhagic Fever; MCMC-Gibbs Sampling; Survival.

I. INTRODUCTION

DENGUE hemorrhagic fever (hereafter abbreviated as

DHF) is a serious health problem that can lead to

hospitalization and significant rate of mortality in tropical

Asian countries, including Indonesia, which globally, the

number of cases increases significantly every year [1]. DHF

is a disease caused by the dengue virus transmitted by

Aedes Aegypti mosquito [2]. The mosquito spreads the

virus from a sufferer to healthy people through bites [3].

Several factors influence the incidence of DHF, including

host susceptibility, environment, and the virus itself [4]. The

factors that influence the recovery rate of DHF patients are

demographic factors including age, sex, and education level

[5]. Those factors are interesting to be observed further [6].
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Survival analysis is a set of statistical procedures for

analyzing data in which the response variable results from a

period of time until an event occurs. It aims to predict the

probability of survival, recurrence, death, and other events

over a period of time [7]. Survival model is used to explicate

that the hazard of an event is influenced by a number of

covariates mentioned in supporting theory [8]. Hazard rate

is the instantaneous risk of a unit experiment that survives

an event at a particular point of time, that is, it does not

experience the event in interest until the period is over [9].

Baseline hazard is the risk of an event to occur without taking

covariate effect into account, such as time dependency of

an event [10]. Survival analysis has three functions, namely

the survival function, the hazard function and the probability

density function [11].

A survival model is a mathematical model often applied

in various fields of research, especially in the health sector.

Survival models can also be used to identify risk factors of

events and to address situations in which risk factors change

over time [12]. Based on this information, the researchers

aimed to find out the factors that influence the occurrence of

an event. With the risk factor of incidence versus time, the

survival model of a tool will be more adequate [13]. Survival

analysis has been widely applied in various health or medical

fields and is known by various terms in other fields such as

event history analysis in sociology, and reliability analysis

and duration transition analysis in economics [14].

Research conducted by [15] applied the spatial survival

model to political science by modelling the time period

until parliament membership structure in the United States

government was announced by NAFTA. The application of

survival model in political science does not define death as

an actual death, but instead, it refers to the survival time

of a unit before experiencing a political event. A similar

study was carried out by [16] who applied spatial survival

model to HIV/AIDS incidence in East Java Province by

modelling the time until the patients were pronounced dead,

or got referrals to stop Anti Retro Viral Treatment (ART),

measured by a 3-parameter Lognormal distribution with

spatial effects. In health sciences, survival model is used

to observe actual death cases. Similar research conducted

by [5] examined a spatial survival model for DHF cases in

Makassar by modelling the length of hospitalization until

the patients recovered and were discharged and by identi-

fying any censored or failure data. According to a study

conducted by [6] using a Bayesian Mixture Survival analysis

with Weibull Mixture model distribution on DHF cases, it

was found that the duration of hospitalization or survival

time of the patients before recovery had mixed distribution.
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Previous studies regarding survival model proposed that a

good estimate will be produced if the survival data are

assumed to have certain distributions such as the 3-Parameter

Weibull and the 3-Parameter Log Normal. Unfortunately, not

all survival data distributions can be signified clearly. Thus,

this study examines the survival Dagum 3 parameter model

using Bayesian MCMC approach to estimate the best model

and the parameters of Dagum 3 parameter link function

and the factors influencing DHF patients’ recovery rate.

Its analysis result can be presented in DHF management

dissemination in order to optimally flatten the case number

in Bojonegoro Regency, to raise people’s awareness of the

disease, and to inform them about the factors influencing

the patients’ recovery rate. The results can also be the basis

for Bojonegoro Health Department to create policies and

strategies in accelerating DHF recovery rate.

II. BAYESIAN MCMC

Bayesian model is based on posterior model which com-

bines historical data as prior information and observation

data which derives likelihood function [17]. The estimator

of Bayesian approach is the meanor mode of the posterior

distribution. If a θ parameter is considered as a variable, the

information before an observation is called prior distribution

[18]. When collected, some observation data will display

likelihood called the likelihood data [19]. The distribution of

posterior data is constructed from the combination of prior

information used as prior distribution and sample information

represented by the likelihood function [20]. The equation of

posterior distribution is as follows [21]:

f(θ|x) =
f(x|θ)f(θ)

f(x)
∝ f(x|θ)f(θ) (1)

with:

f(θ|x) = Posterior distribution

f(x|θ) = Likelihood function

f(θ) = Prior distribution

x = Data

θ = Parameter
Bayesian method is an alternative method for estimating

model parameters [22]. The availability of a program package

for Bayesian analysis makes this method more effective

and flexible in complex stochastic modeling analysis [15]

. As a result, some limitations in classical modeling can

be overcome, such as complex models, assumptions that

are not in accordance with the reality, and simplifications

that can be avoided [23]. One of the Bayesian methods is

the Markov Chain Monte Carlo (MCMC), which accord-

ing to [21], is a numerical approach to obtain a posterior

distribution, from a very complicated Bayesian simulation

method which is a combination of Monte Carlo and Markox

Chain properties to obtain sample data based on a specific

sampling scenario [24]. Markov chain is a stochastic process

{θ(1), θ(2), ..., θ(K)}, therefore, it can be expressed in the

following equation [25]:

f
(

θ(K+1)|θ(K), ..., θ(1)
)

= f
(

θ(K+1)|θ(K)
)

(2)

In generating samples from p(θ|x), firstly, the

Markov Chain must be arranged on the condition that

f
(

θ(K+1)|θ(K)
)

must be easily generated and the stationary

distribution of the Markov Chain is a posterior distribution

p(θ|x) through the following steps [26]:

1) Determine the initial value θ(0).

2) Generating samples with as many iterations as K.

3) Observe the convergence of the sample data (if the

convergence conditions have not been reached then

more samples are carried out, continue with step 2 until

they are convergent).

4) Carry out the burn-in process by removing as much

as the first sample B (the burn-in period is the initial

iteration period for parameter estimation in the MCMC

process to remove B as many as the first iteration

in order to eliminate the effect of using the initial

value. The burn-in period will end until equilibrium

conditions are reached).

5) Use {θ(B+1), θ(B+2), ..., θ(K)} as a sample for poste-

rior analysis.

6) Create a posterior distribution plot.

7) Summarize the posterior distribution such as mean,

median, standard deviation and standard error [21].

III. BAYESIAN 3-PARAMETER DAGUM SURVIVAL

LINK FUNCTION

The survival model is semi parametric because it does not

require information about the distribution of the underlying

survival time and the baseline hazard function does not have

to be determined to estimate the parameter [27]. Baseline

hazard is a function that is not specific [28]. According to

[13], hazard function estimates the probability of the object

experiencing an event at time t. The survival model can be

written in the following equation [29]:

h (tij , xij) = h0 (tij) exp (β1x1ij + β2x2ij + ...+ βpxpij) (3)

In this study, the distribution of length of care (survival

time) for DHF patients followed the three-parameter dagum

distribution (α, β, k)[30]. The distribution of dagum has a

function of opportunity density as follows [16]:

f(t; k, α, β) =
αk

(

t
β

)αk−1

β
(

1 +
(

t
β

)α)k+1
(4)

where t > ∞, k > 0, α > 0, β > 0 and k, α the

shape parameter and the scale parameter β. t is the response

variable which has a 3-parameter dagum distribution . While

the cumulative distribution function is as follows [31]:

F (t) = p(T ≤ t)

=
t
∫

0

αk( t
β )

αk−1

β(1+( t
β )

α
)
k+1 dt

=

(

1 +
(

t
β

)

−α
)

−k

(5)

Based on the survival function in equation (5), the survival

function of the 3 parameter dagum distribution can be

determined as follows [16]:

S(t) =1-F(t)

= 1−

(

1 +
(

t
β

)

−α
)

−k
(6)
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Then the Hazard function based on equation (6) is as

follows [32]:

h(t) = f(t)
S(t) =

αk( t
β )

αk−1

β(1+( t
β )

α
)
k+1

1−
(

1+( t
β )

−α
)−k

=
αk
β ( t

β )
αk−1

(1+( t
β )

α
)
−k−1

1−
(

1+( t
β )

−α
)−k

(7)

The Survival regression equation in equation (7) can form

the 3 parameter dagum distribution model as follows [33]:

h(t,X) = h0(t)exp(β1X1 + β2X2 + ...+ βpXp)

= αk
β

( t
β )

αk−1
(1+( t

β )
α
)
−k−1

1−
(

1+( t
β )

−α
)−k

(8)

where [16]:

y dagum(α, β, k)
µ = βTxij + εi, εi|ε−iNormal(a, b), βNormal(s, r)

The posterior marginal distribution for each of the k,

parameters and is done by integrating out the relevant pa-

rameters and can be explained as follows [16]:

p(α|k, β1+i)
∼=

∫

k

∫

β1

...

∫

β1+p

I(t|k, β1, ..., βp)

p(k)p(β1)...p(βp)dkdβ1...dβp

p(k|α, β1+i)
∼=

∫

α

∫

β1

...

∫

β1+p

I(t|α, β1, ..., βp)

p(α)p(β1)...p(βp)dαdβ1...dβp

p(β0|α, k, β1+i)
∼=

∫

α

∫

k

...

∫

βp

I(t|k, α, β1, ..., βp)

p(k)p(α)p(β1)...p(βp)dkdαdβ1...dβp

p(β1|α, k, β1+i 6= 1) ∼=

∫

α

∫

k

...

∫

βp

I(t|α, k, β0, ..., βp)

p(α)p(k)p(β0)p(β2)...

p(β1+p)dαdkdβ0dβ2...dβp

.

.

.

p(βp|α, k, β1+i 6= p) ∼=

∫

α

∫

k

∫

β1

...

∫

βp+1

I(t|α, k, β, ..., β1+i)

p(α)p(k)p(β0)p(β2)...
p(β1+i)dαdkdβ0dβ2...dβ1+i

(9)

IV. METHOD

This research used secondary data of DHF hospitalization

record of patients’ condition in RSUD Dr. R. Sosodoro

Djatikoesoemo, Bojonegoro. The data taken were the length

of hospitalization until the patients discharged, called Failure

event, and the recording period is from May 1st 2019 to

March 30th 2020. The variables taken were Hospitalization

Duration (Y), Sex (X1), Age (X2), Education (X3), Occupa-

tion (X4), Hematocrit Level (X5), Thrombocyte Count (X6),

Hemoglobin Count (X7), and Marriage Status (X8). The

following table presents the information of response variables

and predictors.

The following are the steps to finish the analysis of

Bayesian survival Dagum 3 parameter distribution.

1) Create the model of Bayesian survival Dagum 3 pa-

rameter link function by:

• Determining the prior and joint distributions.

• Estimating the survival model parameter using

MCMC and Gibbs sampling.

• Obtaining the model of survival Dagum 3 param-

eter link function.

2) Collect the data of DHF patients at RS Sosodoro

Djatikoesoemo.

3) Identify the events, and the censored and uncensored

data represented below:

• δ: 0 is censored data which include patients who

experienced failure, such as death, forced dis-

charge, or transfer to other hospital.

• δ:1 is uncensored data which include patients who

did not experience failure, such discharge upon

better condition or recovery.

4) Install “add-ins” of Dagum 3 parameter distribution in

WinBUGS as parameter generator through the follow-

ing steps:

• Install WinBUGS 1.4

• Install Blackbox Component Builder

• Prepare a file containing the connection of new

combined distribution to WinBUGS

• Prepare a template UnivariateTemplate.odc to add

new distributions

• Organize the input needed in UnivariateTem-

plate.odc to add Dagum distribution which consists

of the pdf file, the log-likelihood function, and the

CDF of Dagum distribution.

• Create program coding based on the input in (e)

and put it in the corresponding procedure.

• Compile the program.

• Validate the program.

5) Specify the survival model using open source Win-

BUGS package. Markov Chain Monte Carlo (MCMC)

simulation and Gibb Sampling can be used to de-

termine the survival model and parameter of Dagum

distribution by following the steps below:

• Detremine the Likelihood function

• Signify the prior distribution of Dagum parameters

based on the information provided by the data

• Specify the parameter initialization (α, β and k)

using 1-Step MCMC

• Calculate the values of hazard and survival func-

tions in Dagum distribution based on the obtained

posterior summaries.

6) Determine the mean and variance of the survival

Dagum 3 parameter model by estimating its param-

eters (α, β, k) through MCMC simulation and gibbs

sampling as described in the following steps:

• Specify the likelihood function.

• Determine the prior distribution of each parameter

based on data information.

• Determine the initial value of each parameter

model using 2–steps MCMC.

7) Build T sample θ1, θ2, ...., θT from posterior distribu-

tion p(θ|x) by updating T n times with enough thin to

complete Marcov Chain process.

8) Convergence of algorithm is known as the condition

when the algorithm reaches stationary condition in

Dagum 3 parameter posterior distribution.

9) Obtain the posterior distribution summaries (mean,

median, standard deviation, MC error, and confidence

interval 95%).

10) Choose the best model.

11) Create and interpret the survival model of Dagum 3

parameter distribution.
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TABLE I
RESEARCH VARIABLES

No. Variable Informasi

1 Time (t) 0=censored
1=uncensored

2 Hospitalization Duration (Y) Interval
3 Sex (X1) 1= male

0= female
4 Age (X2) 0 = < 25 years old

1 = 25-50 years old
2 = > 50 years old

5 Education (X3) 0 = No formal education
1 = Elementary school or the
equivalence
2 = Junior high School
3 = Senior high School
4 = University

6 Occupation (X4) 0 = Student
1 = Unemployed
2 = Employed

7 Hematocrit Level (X5) 0 = Hematocrit level < 42
1 = Hematocrit level > 42

8 Thrombocyte Count (X6) 0 = Thrombocyte count < 150.000
1 = Thrombocyte count > 150.000

9 Hemoglobin Count(X7) 0 = Hemoglobin count < 15
1 = Hemoglobin count > 15

10 Marriage Status (X8) 0 = Married
1 = Unmarried

V. RESULT AND DISCUSSION

This study conducted a survival analysis of Dagum 3

parameter function on the factors that affect DHF patients at

RSUD Dr. R. Sosodoro Djatikoesoemo, Bojonegoro. TABLE

1 shows the estimated survival time distribution (t) in the

length Dengue Fever inpatients by implementing the Kol-

mogorov Smirnov test through the Easy-Fit Program with

the following hypotheses: H0: Selection of survival time is

in accordance with the dagum estimated distribution of 3 Pa-

rameters. H1: Selection of survival time is not in accordance

with the dagum estimated distribution of 3 Parameters.

TABLE II
SURVIVAL TIME DISTRIBUTION TEST

Distribution Statistics Test p value Rank Decision

Dagum 0.14723 0.15324 4 Accept H0

Based on the testing results of the data distribution of

survival time for dengue hemorrhagic fever patients shows

that the appropriate predictive distribution is the 3-parameter

chin distribution with the p value Kolmogorov Smirnov

greater than the critical value α = 0.05. Dagum distribution

of 3 parameters is a positive distribution. It shows that the

patient will recover after hospitalization in Dr. R. Sosodoro

Djatikoesoemo, Bojonegoro. TABLE 2 below presents the

patients’ survival and hazard functions based on the esti-

mation of Bayesian Dagum 3 parameter distribution versus

survival time data:

The result showed that the longer is the hospitalization

duration, the higher is the recovery rate and the lower is

the survival chance until t time. It means that patients who

were hospitalized longer had bigger chance for recovery. For

example, the survival chance on day 4 was 0.54. It means

that the number of patients who had not recovered on day

4 was 54%. Meanwhile, based on the hazard function, on

day 4, the patients’ recovery rate was 0.55. It means that the

Fig. 1. Survival Function of DHF Patients

Fig. 2. Hazard Function of DHF Patients

number of patients who recovered on day 4 was 55%. Fig. 1

illustrates the survival function over time. It can be seen that

the patients’ probability to survive on day 8 nearly reached

0, meaning that all patients had recovered.

Fig. 2 shows that the hazard value or the recovery rate of

DHF patients increased. It means that longer hospitalization

increased the recovery rate, thus the probability to recover

was bigger. However, on day 7, the hospitalization duration

decreased, meaning that there was a patient on day 7 who had

not recovered. Next, in order to identify whether the normal
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TABLE III
HAZARD AND SURVIVAL FUNCTIONS IN DAGUM 3

PARAMETER DISTRIBUTION

Day S(t) h(t)

1 1.00 0.003
2 0.97 0.07
3 0.83 0.28
4 0.54 0.55
5 0.29 0.68
6 0.15 0.67
7 0.08 0.62
8 0.04 0.56

frailty model was the best one on Dagum 3 parameter, it was

then compared to a non-frailty one. Based on the analysis

result of TABLE 3 using DIC goodness of fit model, the

survival model with random effect showed the lowest DIC

value compared to that without random effect. Therefore, it

can be assumed that the model with normal random effect is a

better model for DHF in Bojonegoro than non-frailty survival

model. It can be assumed that there was heterogeneity that

could not be explained or represented by the factors in non-

frailty survival model.

TABLE IV
DIC IN SURVIVAL MODEL

Model
DIC

Dagum 3 Parameter

Non-Frailty 426.563
Normal Frailty 426.391

The benefit of using frailty model was also shown by

the 95% confidence interval on the significant factors that

influence DHF patients’ survival time as compared to non-

frailty model. The efficiency of 95% confidence interval was

because the model could specify the covariance structure and

the random effect very well. Random effect survival model

could reduce bias, thus explaining the heterogeneity effect

of the model. Below is the result of Dagum 3 Parameter

survival model with normal random effect:

TABLE 4 presents the significant factors of DHF patients

recovery rate if the values between 2,5% to 97,5% did not

contain 0. It shows that not all factors were significant for the

recovery rate. The variable column displays the factors that

seemed to predict the recovery rate, mean column displays

model parameter values, while the other four columns show

the estimated values of confidence interval 97,5%. The

factors predicting DHF recovery rate were Sex (X1), Age

(X2), Education (X3), Occupation (X4), Hematocrit Level

(X5), Thrombocyte Count (X6), and Marriage Status (X8).

Furthermore, parameter α and k were also significant to

the recovery rate. It shows that DHF occurrences cause

the increase and decrease of hazard function value or the

recovery rate versus time. Below is the Cox Proportional

Hazard Regression model [16]:

h(t,X) = h0(t)exp(5.047+ 0.048X1.0 − 0.084X1.1 + ...− 0.843X8.1

Next, odd ratio was used to determine the risk level/bias of

a certain factor. The odd ratio value shows that the survival

rate from death on individuals with bigger hazard factor

was exp(β)times higher than those with lower hazard factor.

In the posterior summaries of survival Dagum 3 parameter

model link function presented in TABLE 4, it can be seen that

Sex (X1) with (β̂ = 0.048) was significant to DHF recovery

TABLE V
POSTERIOR SUMMARIES OF NORMAL FRAILTY SURVIVAL

MODEL

Variable Parameter Mean 2,50% Median 97,50%

Random Effect W 0.046 -3.286 0.011 3.665
Alpha A 5.122 3.655 5.013 7.162
X1.0 b1 0.048 -1.058 0.114 1.034
X1.1 b2 -0.084 -1.193 -0.017 0.907
X2.0 b3 -1.297 -1.970 -1.295 -0.415
X2.1 b4 -1.213 -1.837 -1.203 -0.416
X2.2 b5 -0.991 -1.650 -0.985 -0.188
X3.0 b6 2.156 1.143 2.124 3.419
X3.1 b7 0.952 0.185 1.049 1.614
X3.2 b8 0.947 0.167 1.030 1.626
X3.3 b9 0.765 -0.002 0.868 1.440
X4.0 b10 -0.229 -1.438 -0.054 0.868
X4.1 b11 -0.409 -1.686 -0.303 0.688
X4.2 b12 -0.361 -1.584 -0.211 0.693
X5.0 b13 -0.647 -1.371 -0.701 -0.012
X5.1 b14 -0.567 -1.251 -0.641 0.085
X6.0 b15 -0.652 -1.576 -0.534 -0.002
X6.1 b16 -0.688 -1.670 -0.564 -0.032
X7.0 b17 -0.813 -1.705 -0.909 0.239
X7.1 b18 -0.751 -1.703 -0.828 0.308
X8.0 b19 -0.891 -1.617 -0.848 -0.311
X8.1 b20 -0.843 -1.586 -0.813 -0.229

Constanta b0 5.047 4.095 4.952 6.104
K k 0.892 0.407 0.809 1.792

Lambda λ 1.558 0.737 1.338 3.716
Rho ρ 0.661 0.073 0.559 1.844

rate at exp(-0,1067) = 0.13. It shows that female patients

were 0.13 times slower to recover than the male ones. Thus,

overall, the death rate of female patients is higher than the

male ones because their bodies are more prone to dengue

virus. Similar interpretation applies to all variables.

The survival analysis result Dagum 3 parameter Dagum

link function using Bayesian MCMC method shows that the

factors predicting DHF were Sex (X1), Age (X2), Education

(X3), Occupation (X4), Hematocrit Level (X5), Thrombo-

cyte Count (X6), and Marriage Status (X8). This finding

differs from that of [6] who found three significant factors

using Bayesian mixture survival with Weibull distribution,

namely Sex, Hematocrit Level, and Thrombocyte Count.

Study conducted by [5] using Weibull distribution and Cox

semi-parametric found Age, Leukocytes, and Thrombocyte

variables to be significant. Another DHF study carried out by

[34] in Pakistan using Weibull distribution survival analysis

found that Sex and Age were significant. Similar study

by [35] concluded that Age and Thrombocyte Count were

significant to recovery rate. Thus, it can be concluded that

the epidemiologically huge number of DHF cases needs to

be overcome by implementing health program to the society

through survey system and routine assessment of recovery

rate. The result also emphasized the importance of using

data distribution in survival analysis. The survival Dagum 3

parameter link function with normal random effect was able

to provide information important to be presented in DHF

management dissemination in Bojonegoro.

Figure 3 shows that Cox proportional hazard regression

dagum three-parameter link function with frailty normal

value value or recovery rate for DHF patients is based

continuously on Sex (X1), Age (X2), Education (X3), Oc-

cupation (X4), Hematocrit Level (X5), Thrombocyte Count

(X6), and Marital Status (X8). This shows the recovery rate

in Bojonegoro regency same. The recovery rate is affected

by dengue fever based on a person’s lifestyle factors such
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Fig. 3. Cox Proposional Hazard Regression dagum 3 parameter link
function with frailty Normal

as maintaining cleanliness and health[42]. One thing that

distinguishes it is the width of the interval between the

patient’s recovery rate because the average random effect

parameter has a significant effect on the cure rate [43]. So

it can be said that the case of dengue fever in Bojonegoro

does depend on the variety component [42] It means that

the difference in the value of the variance from the usual

random effect results in a different confidence interval for

the cure rate for dengue hemorrhagic fever. Cox proportional

hazard regression of the three-link function parameters with

frailty normal distribution can be used as a basic model for

the Bojonegoro regency Health Department’s consideration

in taking policies to formulate strategic steps to accelerate

recovery rate for dengue hemorrhagic fever.

VI. CONCLUSION

Based on the analysis result, it can be concluded that time

distribution of survival Dagum 3 parameter link function

model could show the significant factors affecting DHF

cases in Bojonegoro. Those factors are Sex (X1), Age (X2),

Education (X3), Occupation (X4), Hematocrit Level (X5),

Thrombocyte Count (X6), and Marriage Status (X8). This

distribution can be used to improve previous researches.

Survival Dagum 3 parameter model with MCMC compu-

tation method using winBUGS was not only successful

in estimating the parameters accurately but also easier for

researchers who are able to explain complex models, when

the assumptions do not conform with the reality, and to

predict the survival time.
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